

DESIGN GUIDANCE AND CODES

FINAL REPORT | 2023

Quality information

Prepared by	Check by	Approved by
Luis Juarez	Ben Castell	Ben Castell
Associate Director	Director	Director
Holly MacMahon		
Graduate Urban Designe	r	

Revision History

Issue no.	Issue date	Details	Issued by	Position
3	November 2023	Final draft	Ben Castell	Director
2	September 2022	Second draft following comments from steering group	Luis Juarez	Associate Director
1	March 2022	First draft report	Holly MacMahon	Graduate Urban Designer

This document has been prepared by AECOM Limited ("AECOM") in accordance with its contract with Locality (the "Client") and in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. AECOM shall have no liability to any third party that makes use of or relies upon this document.

CONTENTS

01. Introduction	5	04. Design guidance and codes	52
01.1 Purpose of this document	5	04.1 Introduction	52
01.2 Area of study	6	04.1.1 Importance of good design	52
01.3 Design guidance and best practice	8	04.1.2 Placemaking and design codes	53
	11	04.2 The design codes	53
02. Context Analysis		SL. Settlement layout	55
02.1 Surrounding context	11	BU. Built form	57
02.2 Movement strategy	13	EE. Environmental and energy efficiency	70
02.3 Conservation areas	15	04.4 Checklist	83
02.4 Landscape and open space network	19	05. Delivery	92
02.5 Topography and flood risk	23	05. Delivery	92
03. Character Study	26	05.1 How to use this guide	92
03.1 Defining the character areas	26		
03.1.1 Bures St Mary historic core	28		
03.1.2 Bures Hamlet conservation area	37		
03.1.3 Modern estate	42		
03.1.4 Rural typology	46		
03.2 AECOM buildings survey	48		

Introduction

01

01. INTRODUCTION

Through the Department for Levelling Up, Housing and Communities' Neighbourhood Planning Programme led by Locality, AECOM was commissioned to provide design support to Bures Parish Council. The support is intended to provide design guidance and codes based on the character and local qualities of the area.

01.1 Purpose of this document

The Neighbourhood Plan Advisory Committee has sought to develop a set of design codes guiding any future development in the village.

The National Planning Policy Framework (NPPF; 2021, paragraph 127) states that "Neighbourhood planning groups can play an important role in identifying the special qualities of each area and explaining how this should be reflected in development, both through their own plans and by engaging in the production of design policy, guidance and codes by local planning authorities and developers."

The stages of production for this document are outlined here:

- 1 Site visit and analysis.
- 2 Develop design code document.
- 3 Feedback period.
- 4 Address feedback.
- **5** Final review.
- **6** Submission of a final report.

01.2 Area of study

Bures is located in the east of England along the Essex-Suffolk border. The village is split between the two counties into Bures St Mary on the Suffolk side (east) and Bures Hamlet on the Essex side (west). The River Stour, which forms the county border, distinguishes these two halves of Bures and the bridge over the river is the transition from one county to the other.

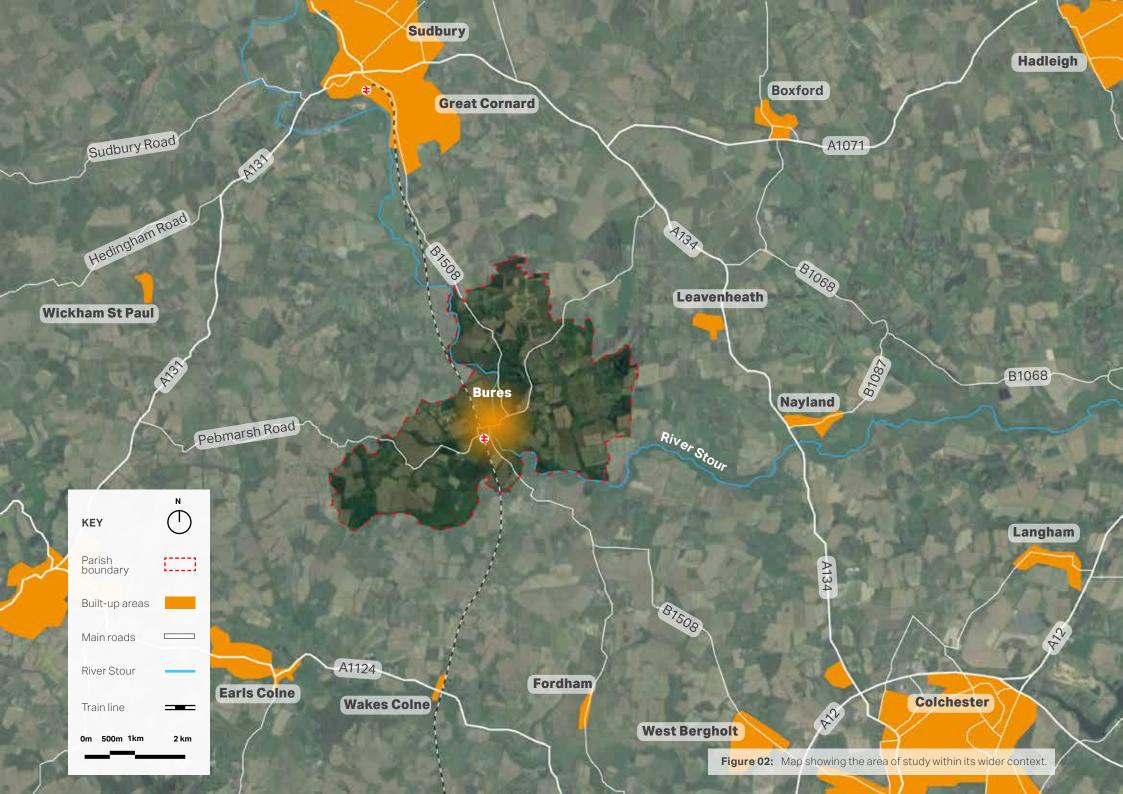
The Bures neighbourhood plan covers both areas of the village, collectively known as Bures, as well as the surrounding rural landscape.

The Suffolk Landscape Character Assessment classifies this landscape as ancient rolling farmlands, the village area as rolling valley farmlands and the river and riverbanks as valley meadowlands.

The settlement area of Bures sits in a valley surrounded by hills of predominantly open fields which provides wide, far-reaching views. An important characteristic for Bures is the relationship between the village and surrounding valley, which is described as a

'green nest setting'. The constrained built-up area on the valley floor and adjacent green hillsides provides this aesthetic quality.

Recent development has begun to extend the settlement area further up the valley, which has raised concerns in regard to retaining the rural nature of Bures and the potential impact to views from both across and within the valley.


Although the rural heritage is an important aspect of its identity, Bures also has industrial roots. In the Victorian era there were a number of small industries operating in the village including: a water mill, maltings, brickworks, slaughterhouse and tannery.

Initially these relied heavily on the River Stour for goods transportation and later on the rail network. A railway station was built in the village in 1849 and provided Bures with national trade connections. The industries of Bures have since declined and disappeared, but the railway station is now a valuable connection, especially for commuters to London.

Today the village is residential with a small number of local amenities and a rich architectural heritage. There are 75 listed buildings within the neighbourhood plan boundary including the grade I listed St Mary's Church at the heart of the historic village core.

Figure 01: Image showing St Mary's Church and the Bures St Mary sign on the east side of the bridge across the River Stour indicating the transition from Bures Hamlet in Essex to Bures St Mary in Suffolk.

01.3 Design guidance and best practice

As the National Planning Policy Framework (paragraph 126) notes, "good design is a key aspect of sustainable development, creates better places in which to live and work and helps make development acceptable to communities". National and local policy documents can provide valuable guidance on bringing about good design and the benefits accompanying it. Some are there to ensure adequate planning regulations are in place to ensure development is both fit for purpose and able to build sustainable, thriving communities. Other documents are more technical and offer specific design guidance which can inform design codes and masterplanning activities.

Developers should refer to these key documents when planning future development in Bures. The following documents at a national level have informed the design guidance within this report:

2021 National Model Design Code DLUHC

This report provides detailed guidance on the production of design codes, guides and policies to promote successful design. It expands on 10 characteristics of good design set out in the National Design Guide. This guide should be used as reference for new development.

2020 - Building for a Healthy Life

Homes England

Building for a Healthy Life (BHL) is the new (2020) name for Building for Life, the government-endorsed industry standard for well-designed homes and neighbourhoods. The new name reflects the crucial role that the built environment has in promoting wellbeing. The BHL toolkit sets out principles to help guide discussions on planning applications and to help local planning authorities to assess the quality of proposed (and completed)

developments, but can also provide useful prompts and questions for planning applicants to consider during the different stages of the design process.

2023 - National Planning Policy Framework DLUHC

Development needs to consider national level planning policy guidance as set out in the National Planning Policy Framework (NPPF) and the National Planning Policy Guidance (NPPG). In particular, NPPF Chapter 12: Achieving well-designed places stresses the creation of high-quality buildings and places.

2021 - National Design Guide DLUHC

The National Design Guide (Department for Levelling Up, Housing and Communities, 2019) illustrates how well-designed places that are beautiful, enduring and successful can be achieved in practice.

2007 - Manual for Streets

Department for Transport

Development is expected to respond positively to the Manual for Streets, the Government's guidance on how to design, construct, adopt and maintain new and existing residential streets. It promotes streets and wider development that avoid car dominated layouts and promote active travel.

2018 - The Essex Design Guide

Essex County Council

The Essex Design Guide was established in 1973 by Essex County Council and periodically updated since. It is used as a reference guide to help create high quality places with an identity specific to its Essex context.

2000 - Suffolk design guide for residential areas

Suffolk County Council

This design guide aims to set out the principles, guidelines which should be adopted by all those involved in the development of housing areas whether it be developers, house builders, local planning authorities or utility providers.

The NPPF goes on to root neighbourhood planning at the heart of the drive for quality development: "Design policies should be developed with local communities so they reflect local aspirations, and are grounded in an understanding and evaluation of each area's defining characteristics. Neighbourhood plans can play an important role in identifying the special qualities of each area and explaining how this should be reflected in development" (paragraph 125).

01.3.1 Local planning policy context

Local planning policy can provide design guidance that is tailored to the context of the development and supported by analysis that is taken directly from the area. Therefore, it is vital local policy is considered when developing in Bures.

2013 - 2033 - Braintree District Local Plan

Adopted in February 2021, the Braintree District Local Plan sets out a strategic plan for Braintree, a district of North Essex which covers half of Bures village. The plan is shared with Colchester and Tendring Councils and covers all three authorities. The completed Section 1 covers topics relevant for the district's future development including: sustainable development, spatial context, meeting the need for new homes, providing for employment, infrastructure and connectivity, creating quality places and garden communities.

2007 - Bures St Mary Conservation Area Appraisal

Babergh District Council

The conservation area was designated by West Suffolk County Council in 1973 and this document provides a "demonstration of quality of place" intended to inform the Planning Officer when assessing proposed works in the area.

2006 - Babergh Local Plan

Babergh local plan was adopted by the Babergh District Council on 1st June 2006 and sets out policies and proposals for the control of development across the district. These detail topics including environment, economy and employment, shopping, countryside and the rural economy, built environment and conservation, recreation and tourism and transport.

Context analysis

02

02. CONTEXT ANALYSIS

This section outlines the existing context of Bures and its physical features. This analysis has informed the character studies developed in chapter 3.

02.1 Surrounding context

The main road running through Bures, the B1508, links the village north to Sudbury and south to Colchester. The village sits in the River Stour valley and is surrounded by rural landscape. There are a few small hamlets near to Bures, including Mount Bures which lies on the edge of the neighbourhood plan area.

The rural landscape is categorised as ancient rolling farmland in the Suffolk Landscape Character Assessment. Some key characteristics of this type of landscape are:

- Rolling arable landscape of chalky clays and loams, with blocks of ancient woodland
- Dissected widely and often deeply by river valleys
- Hedges of hawthorn and elm with oak ash and field maple as hedgerow trees
- Network of winding lanes and paths often associated with hedges, creating visual intimacy

The River Stour which runs through the village forms most of the county boundary between Suffolk and Essex, running from its source in West Wickham in Cambridgeshire and joining the North Sea at Harwich in Essex.

The Dedham vale Area of Outstanding Natural Beauty lies just east of Bures and is designated to protect the vulnerable pastoral landscape. Collectively the Dedham vale and the River Stour valley, where Bures sits, is characterised by 'picturesque villages, rolling farmland, rivers, meadows, ancient woodlands and a wide variety of local wildlife'.

The rolling landscape in which Bures sits is unique to this part of Suffolk. In general, the county is otherwise characterised by flat, gentle landscape.

02.2 Movement network

Bures is located just over 5 miles south of Sudbury and 10 miles north of Colchester. The B1508 runs north south through Bures linking to these larger town and forming the High Street and main road of the village.

In general, roads have a rural character. Within the village settlement area there are variations in width and pavement provision. Where the B1508 runs through Bures Hamlet the road is considerably wider than in Bures St Mary where it transitions into a more typical High Street of historic villages.

The road network in the modern areas of the village has a more suburban quality and has wider and more consistent pavement provision.

Bures has six bus services which link to Colchester, Sudbury and also other rural villages such as Mount Bures and Eight Ash Green. The train station in Bures, located on Lamarsh Road in Bures Hamlet, provides the village with national connections including direct links to London.

The PRoW (Public Rights of Way) network within the village consists of a number of footpaths, bridleways and byways which connect different areas of Bures as well as extending into the surrounding countryside and hamlets such as Mount Bures.

Route 13 of the Sustrans National Cycle Network runs through the centre of Bures. This route starts at Tower Bridge and runs over 100 miles north through Colchester, Bures, Sudbury, Thetford and finally Dereham.

Figure 04: Part of the road network which connects Bures to surrounding areas and consists of mainly narrow roads which are rural in character.

02.3 Conservation areas

There are two separate conservation areas for Bures St Mary and Bures Hamlet established in 1973 and 1969 respectively. These cover much of the core village as well as an extensive area of the surrounding landscape.

The Bures St Mary conservation area forms the historic core of Bures and contains 29 listed buildings within the village, as well as an additional 7 within the surrounding landscape included in the conservation area. The Bures Hamlet conservation area has 21 listed buildings. This area of the village established itself more recently compared with the Suffolk side, growing from a small number of cottages to today a built-up area of similar size to Bures St Mary.

The heritage and character of the two conservation areas reflect this difference in development time period; however, there are a few consistent features which can be seen in both conservation areas.

For example, many buildings are timberframed and plastered and there are several examples of colourfully painted facades.

Notable listed buildings in the Bures St Mary conservation area include:

- Church of St Mary (LEN 1036711) is grade I listed and a defining part of the character of the Bures St Mary. A flint and stone church predominantly with 14th century heritage and some 16th century alterations and additions the buildings have several unique architectural and historical elements which justify its grade I listed status, for example, the 14th century north porch constructed from heavy timbers which can be seen from the High Street.
- The Old Bakery (LEN 1351766) is a grade II* listed house composed of two tenements. One is 16th century, timberframed and plastered with a jettied cross wing on the first floor. The other is 17th century, also timber-framed and plastered with exposed timberframing and an upper-storey jettied on exposed joists. Additional architectural

- details include a Tudor doorway with a castellated doorhead, carved with roses.
- Malthouse and premises occupied by WA church (LEN 1036677) are grade II* listed and consist of a 16th-17th century timber-framed and plastered house with exposed timber-framing and 18th century red brick Malthouse, arranged on a U-shaped plan. The timber-framed house features a jettied upper floor with a unique and elaborately carved bressummer.

Notable listed buildings in the Bures Hamlet conservation area include:

• The Railway Maltings, Lamarsh Hill (LEN 1122845) in Bures Hamlet which has in the 21st century been converted into housing. Dating to 1851 this building is grade II listed, 3 storeys high and clad in red brick with slate roofs. It has a H-plan layout and incorporates a square oast house. It differs from the other listed buildings examples in its materiality and form, representing more recent heritage

of Bures in the development of its railway line and station.

- The White House (LEN 1122847) is a grade II listed, early 19th century building of plastered brick and slate roof. Named for its white facade, the house sits on a large plot between Station Hill and Water Lane.
- Properties along Water Lane including Pear Tree (LEN 1166237), Water Lane cottage (LEN 1122848) and numbers 34 and 36 (LEN 1338104). These are all grade II listed buildings. The cottages of 34 and 36 are 17th century timber framed. They have a painted brick facade with other walls rendered. Both Water Lane cottage and Pear Tree are timber framed and plastered with handmade red clay tile roofs. Water Lane cottage is circa 16th century and Pear Tree 17th century.
- Secretaries Farm (LEN 1122849) is a grade II listed house located on Water Lane and is timber framed with a red

brick facade in Flemish bond and a roof of handmade red clay tiles. The house dates to the 14th century with major alterations from the 18th century and 19th century extensions. Historically this was the home of the Garrads family who were farmers, brickmakers and owners of sailing vessels.

Additionally, outside the conservation areas but within the Bures neighbourhood area, there are notable listed buildings which include:

- St Stephens Chapel (LEN 1351742) is grade I listed and is located east of Bures St Mary. Originally the chapel was erected by Abbot Sampson of Bury in the late 12th or early 13th century. It is a stone rubble building with heavy buttresses on the south and east sides. On the north side there is a gabled 2 storey entrance bay with exposed timber-framing.
- Parsonage Hall (LEN 1122842) is grade II* listed and is located in Bures Hamlet

outside the conservation area. The timber frame and plastered construction dates to the 15th and 16th centuries and features a handmade red clay tile roof and 15th century bays.

Figure 06: View of Water Lane and Water Lane cottage (left of the image) which is grade II listed.

Figure 08: Image showing the 14th century north porch of Church of St Mary, which can be seen from the High Street.

Figure 09: The grade II* listed 'Old Bakery' which faces onto the High Street and has a distinct jettied floor detailing.

Figure 10: The tower of the Grade I listed Church of St Mary in Bures St Mary.

Figure 11: Image of the grade II* listed house adjoined to the Malthouse which features exposed timber construction and unique, elaborate carvings.

Figure 12: The Malthouse, an 18th century red brick building with slate tiled roof, today occupied by W A Church.

02.4 Landscape and open space network

The core village of Bures St Mary has relatively little vegetation, though there are two Tree Preservation Orders which cover a Walnut and a Copper Beech in the Three Horseshoes pub garden and a cluster of trees behind Bolberry House.

There are a number of open spaces within the village including:

- Bures Common, a large area of open space and a small on-site community building used for markets and events.
- Bures recreation ground, located on the east bank of the river, which is run by St Mary's Parish Council and Bures Sportsground Committee and has a number of facilities including: the local football clubhouse, a thatched roof cricket pavilion, the village community centre, free parking, a small recycling centre, a play area for children, football and cricket pitches and seating areas.

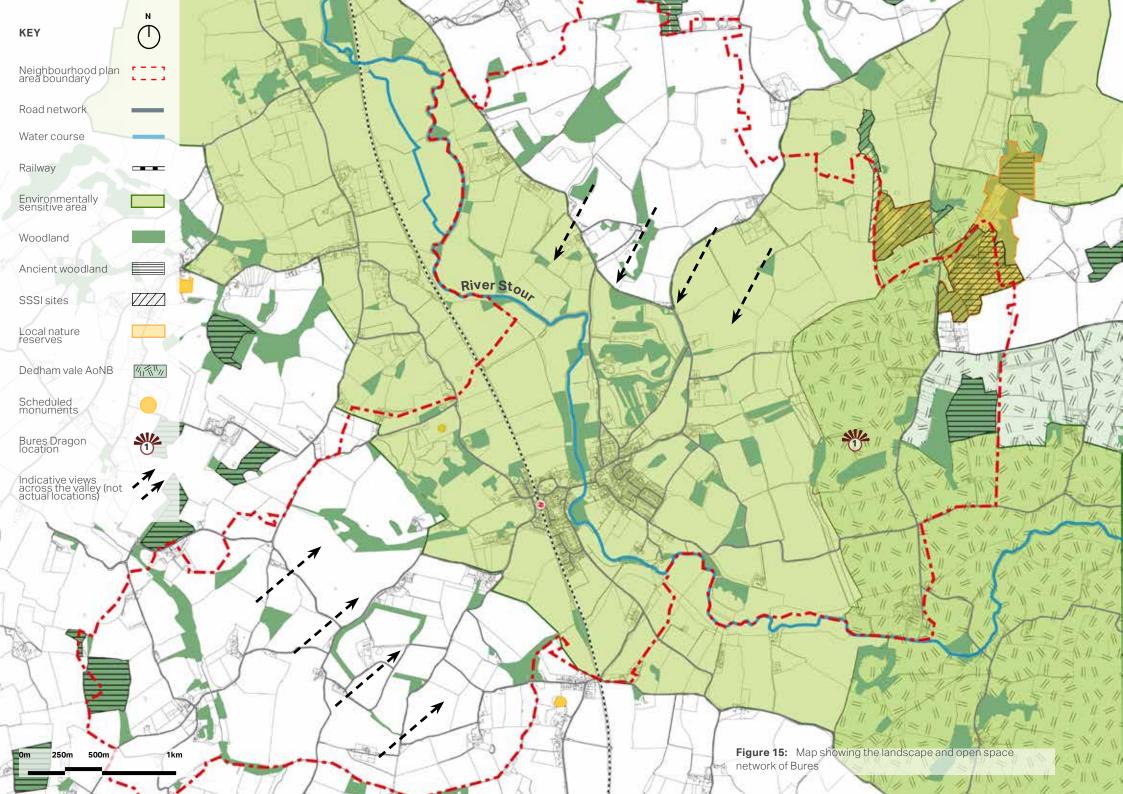
- Two allotments, one on Lamarsh's Hill, west of Bures Hamlet and one at the end of the Croft in Bures St Mary
- A cemetery located on St Edmunds Lane

Figure 13: Bures Common, a large area of green open space in Bures with an on-site community building (right).

Within the wider landscape of the neighbourhood plan area there are three scheduled monuments:

- A circular cropmark at Ferriers Farm (LEN 1010501). This is classified as a Springfield style enclosure and dates to the middle and later Bronze Age. Here there are valuable archaeological remains including postholes, pits and burials. This type of enclosure is rare and unique to eastern England
- Remains of a Roman villa south of Alphamstone Church (LEN 1011807).
 This monument comprises a collection of building material and artefacts such as pottery shards, wall foundations, pits and ditches indicating the location of a Roman villa complex.
- Castle Mound: a motte 40m north of St John's Church (LEN 1012056) which survives as an 10m high earthwork surrounding by a 3.5m ditch. The castle is believed to have been owned by the Sackvilles and built during the reign of either King Stephen or Henry I.

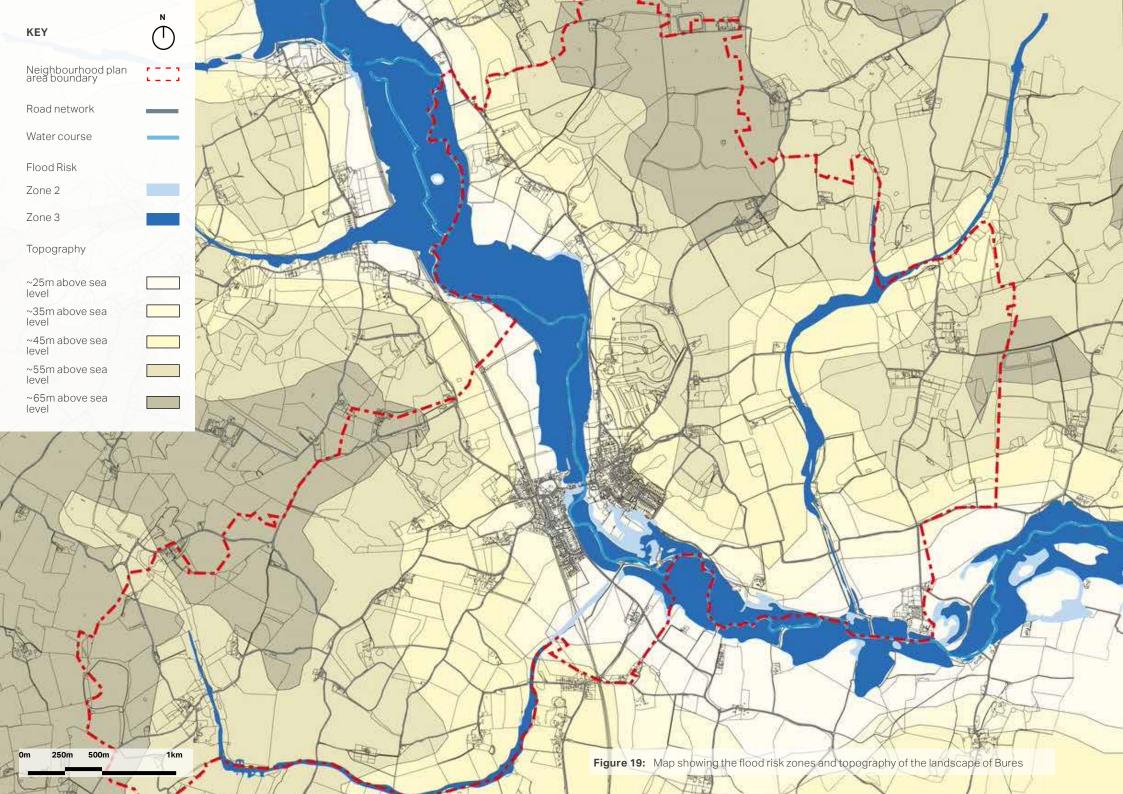
The Dedham Vale Area of Outstanding Natural Beauty lies just east of Bures. This area also incorporates two local nature reserves which fall within the Bures NP boundary: Arger Fen and Spouse's Vale Natural Reserve and Tiger Hill, as well as two sites of special scientific interest.


The open space network of Bures consists of primarily rolling agricultural land interspersed with areas of woodland. Among this woodland there are several areas of ancient woodland and replanted ancient woodland within the neighbourhood plan boundary.

The rolling valley topography creates a number of views across Bures from either side of the valley. There is also a scenic point about 1.5 miles east of the village called 'Bures Dragon'. This hillside chalk drawing refers to the local legend of an encounter with a dragon in Bures in the middle ages and was created in 2012 as part of the Queen's Diamond Jubilee celebration.

Bures is located within an Environmentally Sensitive Area, which is identified as an area of particularly high landscape, wildlife or historic value.

Figure 14: Views across the Stour valley that Bures sits in.


02.5 Topography and flood risk

Bures sits on lowland, the village centre at about 22m above sea level. Additionally, the River Stour runs through the centre of the village with riverbanks bordering both Bures St Mary and Bures Hamlet. There are, therefore, significant flooding risks within the village as shown on Figure 19.

The village's valley location means there is higher ground east and west of the settlement area. The topography is characteristic of this area of east England with rolling hills resulting in gently sloping, rather than steep, valley sides.

Figure 17: The River Stour running through the centre of Bures and the low, green riverbanks either side.

03. CHARACTER STUDY

03.1 Defining the character areas

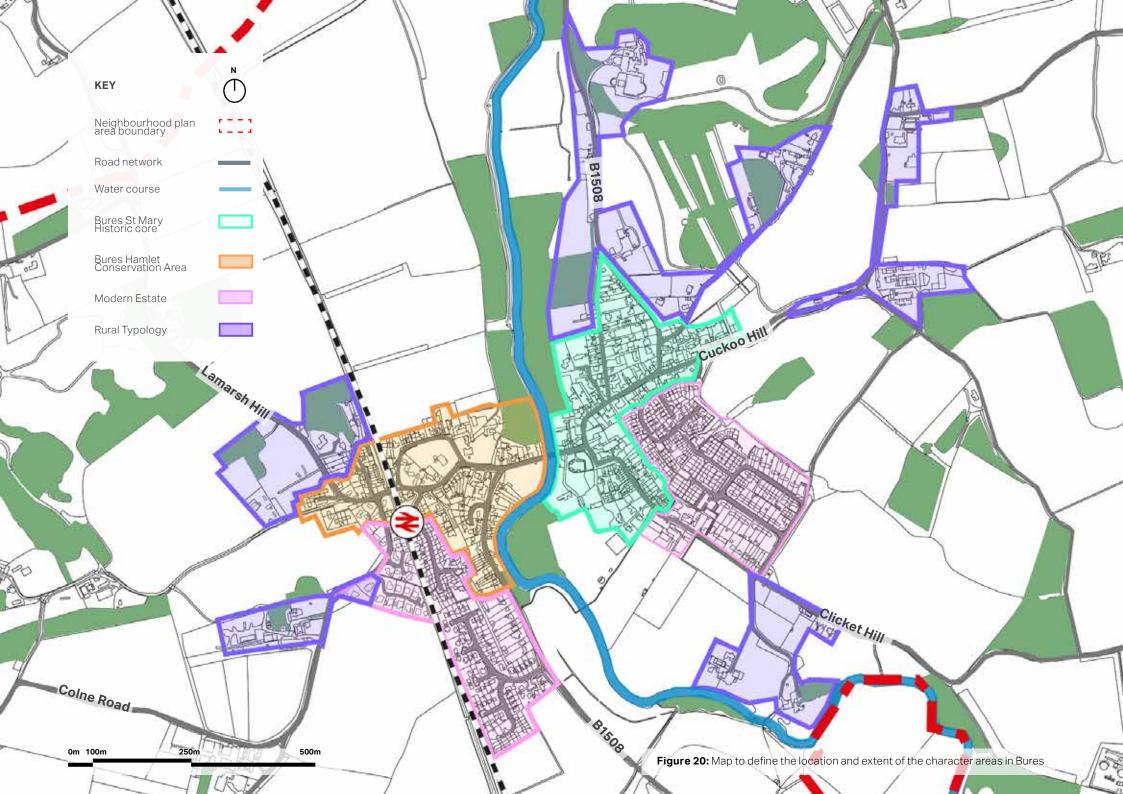
Following on from the analysis set out above, this part of the report focuses on the different character areas we have defined within the village. A settlement is often made up of several character areas. These are areas with similar features which makes for a distinctive place identity. It is therefore important that these areas are treated differently in order to retain the charm and individuality of them. The different areas are characterised by variations in topography, movement, views and landmarks, green space and landscape cover, public realm and streetscape, built form and architectural details. The elements identified in this section will inform the detail design codes developed later in this document.

For Bures we have identified four character areas (See Figure 20), and are as follows:

- CA1- Bures St Mary Historic Core
- CA2- Bures Hamlet Conservation Area
- CA3- Modern Estate
- CA4- Rural Typology

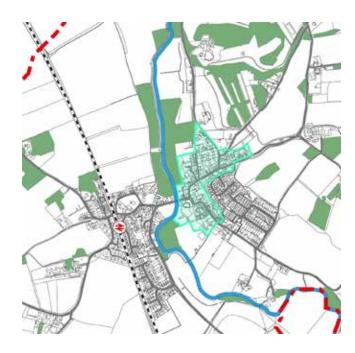
CA1- Bures St Mary Historic Core

2


CA2- Bures Hamlet Conservation Area

3

CA3- Modern Estate


4

CA4- Rural Typology

03.1.1 Bures St Mary historic core

The Bures St Mary historic core covers the oldest area of the village and falls within the Suffolk half of Bures. The area is part of the Bures St Mary conservation area, which extends further into surrounding landscape.

Figure 21: Map to define the location and extent of the Bures St Mary historic core character area.

Land use

The historic core of Bures St Mary is centred around St Mary's church and the primary land use of this area is residential. There are some local amenities including a primary school, community centre, recreation ground, post office, the Three Horseshoes pub, Baptist church and village hall.

Figure 22: Image of a local amenity: the post office, amongst residential buildings.

Figure 23: The Baptist Church, one of the village's local amenities located along the High Street.

Street types and features

The main road of this area is the B1508 which forms the High Street and spine of the historic core of Bures St Mary. There is also a secondary road, Church Square, which branches off the High Street at the churchyard. Smaller lanes and closes branch off from these linear roads.

The High Street is narrow and features narrow pavement provision either side, creating an enclosed character. Church Square opens out around the churchyard to form to widest street section in this area, but narrows again as it continues onto Nayland Road.

The entrance road from the east into Bures St Mary is very rural in character and has no pavement, lined with trees and small grass verges.

Small lanes such as The Croft and Croftside, which branch off the High Street, have an informal character. They are very narrow, with no pavement and often unpaved.

Figure 24: St Mary's Lane, an example of the informal, narrow lanes which branch off the High Street.

Figure 26: View of the High Street showing the narrow road and pavement either side of the road.

Figure 25: View of Nayland Road which has a similar character and width to the High Street at this point,

Figure 27: An image of the junction between the B1508 and Cuckhoo Hill at the top of the High Street which shows the rural character of the roads which enter Bures.

Building line and plot arrangement

Building plots are arranged in rows or terraces close to the road. There is generally a consistent building line throughout the area, especially along the High Street where buildings face directly onto the street, the majority with no gardens or set back.

There are three similarly sized and shaped setbacks for three plots all within a short stretch of the High Street: the Baptist church, a newer housing development and the Maltings. This U-shaped form is based on the historic yard and the setback today is used to provide parking/ courtyard space.

Along other roads which branch off from the High Street there is greater variation in set back; however, in general front gardens remain quite small across this character area.

There are some more generously sized plots further out from the High Street, but in general the plot arrangement in this area is relatively dense. Back gardens are typically larger than front gardens though are still small in plots along the High Street and Church Square.

Figure 28: Image of a U-shaped terrace of housing formed around a courtyard which creates a setback from the road used for car parking.

Figure 30: An image of the High Street as it turns the corner showing the consistent building line which closely follows the road.

Figure 29: View of The Croft, a lane off the High Street, and the building line which at this point sits right up to the road.

Figure 31: Plots further out from the core spine of the High Street often have small front gardens and setback with spaces for parking as pictured here.

Boundary treatment

Many of the buildings in the historic core area have no boundary treatment. Where boundary treatment is used, it is small, for example low brick walls, small fences and hedges.

Good examples of front garden boundary treatment within this character area include Baytree House, Tadworth and The Old Manse.

Figure 32: Image showing examples of boundary treatment along the High Street including The Old Manse (right) and Tadworth (left).

Figure 34: A building on the High Street which faces directly onto the road without any boundary treatment, which is characteristic to this area.

Figure 33: An example of a brick wall boundary treatment at the top of the High Street, a typology typical of Bures.

Figure 35: A view down one of the smaller lanes which branch off the High Street showing some examples of boundary treatments including a wooden fence, low brick walls and hedges.

Height and roofline

The majority of buildings are two storeys in height with a few one storey building examples. The predominant roofing type is pitched, there is variation in depth and roofline, particularly along the High Street.

This variation provides character and individuality to every street.

Materials and architectural details

The materials of buildings in Bures St Mary generally fall into two major groups of buildings which represent the palette and variation of Suffolk's vernacular over time.

Materials and construction

Older buildings are often 16-17th century rendered timber-frame with plaintile roofs. There are variations on this basic typology through occasional examples of exposed timber frame construction and several examples of jettied floors. Roof pitch and style also varies with some dormer examples.

- 1 Plaintile roof
- Rendered timber frame (it is common in Bures for facades to be colourfully painted)
- (3) Jettied floor
- Exposed timber frame construction detailing
- (5) Dormers

Figure 36: Image to show the varying roofline in neighbouring buildings in this area, but a consistent pitch roof style and material.

Figure 37: Grade II listed building with material and construction features characteristic to Bures St Mary

Figure 38: The Old Bakery which has materials and construction features characteristic of Bures St Mary

The other major group consists of newer buildings from the 18-19th century which are of brick construction and have slate roofs. Predominantly local soft 'Suffolk red' brick has been used, though some have now been painted or rendered.

There are also examples of buildings in the local 'Suffolk white' brick or grey gault brick, which were popular building materials in the early 19th century. Among these examples are the grade II listed Baptist Church which is a red brick building with a grey gault brick front.

Figure 39: An 18-19th century red brick row of terraced housing on Church Square with slate roofing.

Figure 40: A building on Bridge Street at the bottom of the High Street of grey brick with tiled roofing,

Figure 41: The grade II listed Baptist Church on the High Street and its grey brick facade.

The old bus yard and sheds of the former Chambers bus depot in Bures are situated at the base of the High Street and are very much part of the street scene.

The house is typical to the character of the St Mary character area in its materiality: red brick construction with a tiled roof.

The bus depot is of a unique architectural form within this character area and stands out from the surrounding buildings. It features corrugated roofing and a facade of repeated vertical windows. The house and depot on a site of 0.8 acres has been sold by auction and expected to be developed.

Figure 42: The bus house and depot at the base of the High Street.

Windows

Windows often have double-hung sashes with glazing bars, some have casements. The majority of window frames are painted, often in white, though there are examples of darker frames. There are also a couple of listed buildings with light leaded window casement.

Windows tend to be modest in size and often aligned closely to the roofline for upper windows and second storey for ground floor windows. There are very few examples of different types of window forms for example bay windows and the overall pattern, shape and character is generally consistent. That is, they are vertical in proportion.

Figure 43: House with windows with double-hung sashes, glazing bars and white, flush cased frames.

Figure 45: Example of white framed windows, common to the Bures St Mary character area.

Figure 44: The grade II* listed malthouse which features lightleaded casement windows and timber frames.

Figure 46: Example of light-leaded casement windows which can be seen in a few houses in Bures St Mary and dark window frames.

Public realm

Roads in this area are narrow with a gentle curving nature. These are mostly functional and have been adapted through time to cope with traffic and vehicular demands. The core of the conservation area is relatively dense with few open, public areas, though there is green open space provided by the churchyard.

Corners and landmarks

The gentle winding layout of the High Street and Church Square in the Bures St Mary offer opportunities for different approaches to buildings following the road deflections. This creates what effectively are focal landmarks or wayfinding references in many streets. Whilst at junctions buildings generally make a corner, on occasion, the facades follow the road changes and maintain a continuous facade.

The main landmark feature of this character area and of Bures village is St Mary's Church. Views to this landmark are important and it serves as a recognisable feature of Bures.

Figure 47: The north porch of the church and the churchyard which faces onto the High Street

Figure 49: An approach to the curving road where a continuous facade is maintained.

Figure 48: A building which sits at the top of the High Street at the junction corner.

Figure 50: View of St Mary's Church from the bridge over the River Stour.

03.1.2 Bures Hamlet conservation area

The Bures Hamlet conservation area covers the Essex part of Bures and is constrained to the inner built-up area of this half of the village.

Figure 51: Map to define the location and extent of the Bures Hamlet conservation area.

Land use

The Bures Hamlet conservation area is predominantly residential; however, includes some village amenities: the village shop/ general store (the only shop in the village), village deli and hairdressers. There is also a large common where the village market and other events take place and the Bures railway station is located at the edge of the conservation area.

Figure 52: The Village shop which is located on the B1508.

Figure 53: The common and the barn on the common which is used to host markets and events in Bures.

Street types and features

Bures Hamlet is formed of ribbon development along two main roads: the B1508 and Station Hill and the small lanes which branch off from these.

The B1508 widens significantly around its junction with Station Hill. In general, though, the main roads through Bures Hamlet are narrower and more rural in character and it is common for one only side of the road to have a pavement.

The lanes which branch off the main roads are generally small, informal and have unpaved surfaces.

Figure 54: The B1508 which runs through the centre of Bures.

Figure 55: Station Hill looking towards the junction with the B1508 and view of St Mary's Church in the distance.

Figure 56: The narrow and more informal road of Water Lane, which is made narrower by the on-street parking.

Building line and plot arrangement

There is a varied building line and plot arrangement in this area. Buildings facing onto the B1508 road, especially towards the centre of the village tend to have small or no front gardens.

However, in most other parts of the conservation area, buildings have front gardens and parking on plot. There are examples of larger front gardens, but it is more common for front gardens to be modest in size and plots to have larger back gardens.

There are a variety of plot sizes. The area bound by Water Lane and Station Road in particular has much larger plot sizes, including the plot of the White House, which is considerably larger than surrounding plots. In general plots are less concentrated and larger than plots in the Bures St Mary conservation area.

Figure 57: Buildings along the B1508 which have no setback and a consistent building line.

Figure 58: View of Station Hill which shows front gardens and brick wall boundary treatments.

Boundary treatment

There is little to no boundary treatment along the main road, the B5108, but across the rest of the conservation area there is often boundary treatment. This is varied and ranges from more comprehensive boundary treatment such as high fences, wall and hedges to softer boundary treatment such as grass verges, low walls and small hedges/vegetation. In particular brick garden walls are characteristic to this area, as can be seen in figure 61 which shows buildings along Station Hill.

Figure 59: Housing with a low wall boundary treatment, typical of the Bures Hamlet character area.

Height and roofline

The majority of buildings are two storeys in height. A new development near the river Stour and the boundary between Bures Hamlet and Bures St Mary is three storeys high and has roof and architectural features not in keeping with the character of the village and detracts from this area.

The predominant roof types are pitched, with some hipped roofs.

Materials and architectural details

Materials and architectural details of Bures Hamlet are similar to those of Bures St Mary. There are examples of both from both of the major architectural styles detailed in the Bures St Mary character area: rendered timber frames with tile roofs and brick construction with slate roofs.

There are also some characteristics unique to this character area, such as a greater prominence of red clay tile roofing.

Figure 60: An example of a housing development uncharacteristic of Bures, due to its height and architectural detailing, particularly of the windows and roof.

Figure 61: An example of a terrace of brick construction with slate roofing, one of the identified typologies of Bures.

Figure 62: An example of exposed timber construction detailing and additionally a brightly painted facade, both characteristic to Bures.

Public realm

The common in the village centre offers a considerable sized green open space for residents. There are some issues with onstreet parking, particularly around the train station area.

Corners and landmarks

The meandering nature of the roads and the opening in grain created by the junction at Station Hill and the B1508 offers some buildings as landmarks or wayfinding points through the village.

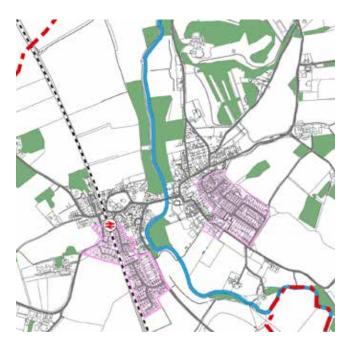

For example, the White House can be seen in the distance from the Station Hill junction.

Figure 63: View of the White House from Station Hill.

03.1.3 Modern Estate

The modern estate character area covers areas of Bures which have been developed in the 20th and 21st century in an estate/cul-de-sac pattern adjacent to the older areas of the village.

Figure 64: Map to define the location and extent of the Modern Estate character area.

Land use

There are areas of modern estate in both Bures Hamlet and Bures St Mary. These cover the residential developments as well as the Bures CEVC primary school and Bures community centre.

Street types and features

The modern estate is formed of cul-desacs which feature one predominant street typology of a regular, paved roads lined either side with pavement. The majority of the modern estate has a straight, very regular street layout, which differs greatly with the more informal street network of the conservation areas.

There are areas of modern estate, however, which have tried to emulate the informal nature of the village and subsequently better reflect the character of Bures, as shown in figure 65.

Within the modern estate of Bures Hamlet there is additionally a network of pedestrian routes through the buildings.

Figure 65: Pikes Marsh, an example of modern estate which follows a more informal layout, reflecting the character of the Bures conservation areas.

Figure 66: Claypits avenue, an example of modern estate which follows a very regular, grid-like layout which differs greatly to the layout of the conservation areas.

Character area development

The modern estate has developed from the mid-1990s and is composed of different forms of estate which reflect the time period they developed in. The older parts of modern estate were developed between 1950 to the late 1960s and include housing in Claypits avenue and the bungalows on Tawney's Ride, which make up the most grid-like layouts of modern estate.

Friends Field which backs onto the Bures St Mary conservation area; the detached houses on Tawney's Ride and much of the modern estate in Bures Hamlet including Normandie Way, Cambridge Way and The Paddocks were developed between the late 1960s and early 1980s.

The more recent modern estate developments include Parsonage Hill and Parsonage Grove which were developed in the 1990s and early 2000s. There has been additional modern infill development of Pikes Marsh in Bures St Mary and Tenterfield in Bures Hamlet.

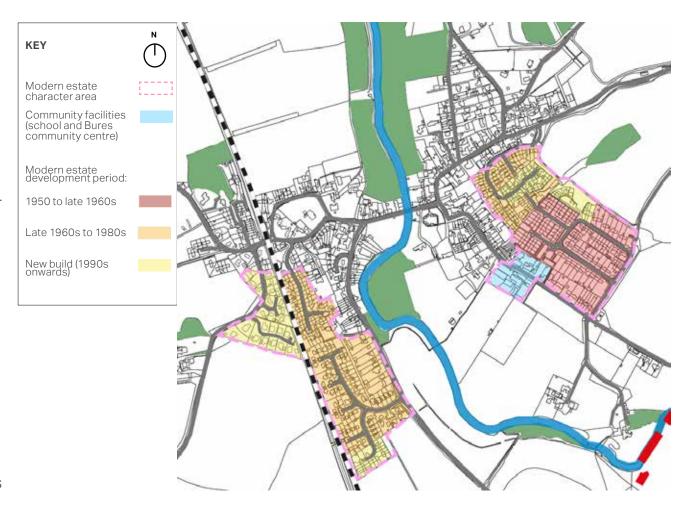


Figure 67: Map to show the different time periods of modern estate development in Bures

Building line and plot arrangement

Plot arrangement is very regular, particularly in the modern estate in Bures St Mary where plots are arranged in a grid-like pattern. All houses have a set-back with front gardens. There is a mix of parking provision within the building plots and separate car parking areas or garages. Buildings are predominantly semi-detached and terraced.

Boundary treatment

Most houses have some type of small/ soft boundary treatment such as low hedges, walls or fences. In some areas there are extended pavements with grass verges between the plot edge and the pavement and additional grass verge buffering between the pavement and road.

Figure 68: Image showing the Paddocks in Bures and features characteristic of modern estate including: pavement provision, semi-detached houses, on-plot parking provision and front gardens with a setback building line.

Height and roofline

Buildings are constrained to one-two storeys in height. There are more bungalows in this character area than other areas in Bures and a concentration of a repeated bungalow typology in the modern estate of Bures St Mary. The modern estate starts to climb the valley hill slightly in some places and the stepped-up rooflines reflect the changes in topography.

Materials and architectural details

The predominant roof type is pitched, there are very few hipped roofs and no flat roof examples. There are several examples of very steep pitched roofs with dormers, particularly in Bures Hamlet. Clay tiles are the dominant roof material.

Roof design of modern estate in Parsonage Grove has negatively impacted views across the valley of Bures due to their pitch height and materiality.

The majority of housing is terraced or semidetached and most are brick constructions with a frequent use of red brick.

Figure 69: Steep pitched roof and dormer examples of houses along Cambridge Way.

Figure 70: The view across the valley is impacted by the roofline of buildings in Parsonage Grove.

Public realm

There are comprehensive pavements and pedestrian routes, particularly in the modern estate in Bures St Mary. Throughout both areas of modern estate there are a number of small areas of open, green space. There are some green spaces where it is unclear if these are public or are part of front gardens.

The modern estate area of Bures St Mary also includes Bures CEVC primary school, Bures community centre which is located next to the Bures recreation ground.

03.1.4 Rural Typology

This character area covers individual or small clusters of housing around the edge of the built-up area of Bures. Parts of the rural typology in the Suffolk half of Bures are included in the Bures St Mary conservation area.

Figure 71: Map to define the location and extent of the Rural Typology character area.

Land use

The land use of this character area is primarily residential with some amenities including two allotments, one on Lamarsh Hill in Bures Hamlet and one at the end of the Croft in Bures St Mary.

Street types and features

Development in these areas has occurred through individual buildings or small groups of housing. These sit along the main roads or along small lanes/ closes which branch off the main road.

Roads at the edge of Bures village are very rural in character. They are typically narrow, without pavement provision and lined by vegetation or open field land.

Figure 72: An example of the rural roads of Bures which are typically narrow and lined by vegetation.

Building line and plot arrangement

Plots are irregular and individual. The rural typology is characterised by individual or small clusters of buildings. The building line is usually set back a considerable distance from the main roads and plots are generally large with generously sized front and back gardens.

Boundary treatment

A characteristic of the rural typology in Bures is the often high level of boundary treatment. Development at the end of Malting close especially has high boundary treatment with fenced entrances.

Figure 73: An image showing the significant setback from the main road of rural housing in Bures.

Height and roofline

Building heights and roofline are varied, but are constrained to one-two storeys. The dominant roof type is pitched, with a few hipped roof and dormer examples.

Materials and architectural details

There is a range of materials used throughout the rural typology. The most common are brick constructions with

Figure 74: An image showing an example of rural typology housing and the roofline which includes dormers.

clay tile roofs and plastered timber frame construction with tiled roof.

There are several listed buildings within the rural areas of Bures including:

- Great Bevills (LEN 1036684), a grade II*
 listed manor house in Bures St Mary. This is a 15th century timber-framed manor built by Sir Richard Waldegrave;
- Nether Hall (LEN 1036682), a grade II listed red brick house from the early 19th century located on Mill Lane in Bures St Mary;
- Fysh House, Assington Road (LEN 1285617), a grade II listed red brick house from the 18th century with 2 timberframed and plastered gables at the back of the house.

03.2 AECOM buildings survey

To inform this Design Code, a survey was carried out on buildings within the centre of the village. The study area chosen was the historic core of the village taking in Lamarsh Hill, Maltings Close, Water Lane, Station Hill, Colchester Road, Bridge Street, High Street, The Croft, Cuckoo Hill, Church Square and Nayland Road.

All domestic and retail buildings in this area dating to the 19th century and before were studied. Rows of houses e.g. 1 to 9 Church Square were treated as single constructions. A total of 114 buildings were surveyed, each building was assessed for a number of attributes:

The results are presented under the attribute headings below, and should be used, where appropriate, to inform the design of new development. They should not necessarily be imitated.

Age

The largest number of buildings in the sample (75 or 60% of the total) were of 19th century origin. This figure diminishes as the buildings get older with just 15 (13%) built in the 18th century; 12 (11%) in the 17th century; 6 (5%) in the 16th century and 6 (5%) before the 16th century.

Height

The height of the buildings in the sample was predominantly two storeys with 100 examples (88%). 11 buildings were single storied (10%) and just one (1%) had three storeys. The single storey buildings tendered to be older than the norm with 5 examples (45%) dating to the 19th century.

Figure 76: St Mary's Church

Figure 75: Apsley House.

Material - walls

61 of the buildings (54%) are constructed of brick. The second largest group is render with 48 (42%). Of the remaining buildings 14 (12%) have visible timber frames, three are of weatherboard and just one is of stone rubble. 85% of the brick buildings date to the 19th century with few examples belonging to the previous centuries and none before the 17th century. The rendered buildings are better represented across the range. Timber is well represented, with more examples in each successive century until the 19th century in which there are no examples.

Figure 79: 24 Colchester Road.

Material - roofs and chimney

60 buildings (53%) have tiled roofs. This is followed by 52 with slate roofs (46%) and just one thatched roof. Tiled roofs are generally on older buildings, with almost all slate being on 19th century buildings. Chimneys of buildings of all ages are almost exclusively in brick with just one example each in stone and render. Gables facing the street are not common with only nine examples. There are few examples of gables after the 17th century, but dormers are a feature on 41% of the sample. They appear on houses of all ages but are most prevalent on 18th century buildings with 32 examples (60%).

Figure 78: Malthouse and premises Grade II*.

Doors

Doors are generally wooden panelled, mainly four or six panels with some vertical panels on older properties. Some replacement doors have glazing to the top half and examples in shops are often glazed. 19 buildings (17%) have hoods above the doors, the majority (74%) being on 19th century buildings.

Figure 77: Newmans (Old Toll House), Grade II.

Windows

Casement windows are more prevalent than sashes being applied to 66 buildings (58%) against 41 (36%). Of the 66 buildings with casement windows 53 are on 19th century buildings with the other examples on 16th, 17th and 18th century buildings. Being a late 17th century invention first used on grand houses the sashes on 11 pre-18th century buildings will mainly be replacements for the original casements. Seven buildings have mullions which appear on buildings of varying ages.

Figure 82: The Cottage.

Pre-18th century buildings

There were 24 pre-18th century buildings in the sample, 21% of the total. The majority (88%) are two storeys high with no three storey and only two one-storey buildings present. 50% are rendered as opposed to 42% across buildings of all ages while 38% were timber framed against 12%. Brick is poorly represented at 21% against 54%. Windows are split fairly evenly between sashes and casements but five of the seven examples of mullions are on pre-18th century buildings. Roofs are almost all tiled with only one example of slate.

Figure 81: Spout House, Grade II.

18th century buildings

There were 15 18th century buildings in the sample, 13% of the total. While two storey buildings still dominate one-storey buildings are slightly more prevalent than in the earlier buildings. 18th century buildings are more likely to have sash windows (67%) and there is only one example with mullions. Render (53%) and timber (33%) continue to be the most used construction materials and wall finishes against brick at 27%. Tile still dominates as a roof covering (80%) and the only example of thatch in the sample is on an 18th century building.

Figure 80: Tanchin and Bondi, Grade II.

19th century buildings

There were 75 19th century buildings in the sample, 66% of the total. 92% are two storeys high and 69% are of brick construction. Slate is more dominant than tile accounting for 65% of roofs as opposed to 46% for the sample as a whole. Casements are more prevalent than sashes at 71% (58% for the whole sample). 14 of the 19 examples of door hoods are on 19th century buildings.

Decorative and architectural features

The majority of the buildings in the sample are vernacular and decorative and architectural features are sparingly used. Three buildings are weatherboarded, one from the 17th century, two from the 19th. Ten buildings of varying ages have drip moulding over the doors and or windows. Only four buildings have bay windows and there is only one oriel, on a pre-16th century building. Just two buildings, both 19th century have ashlar dressings. Decorative bargeboards are present but not widespread.

Boundary treatment

65% of the sample had boundaries with the street. Of these 54 (83%) were low brick walls in Flemish bond, 8 (12%) were hedges and six (9%) were railings. Three houses had walls topped with railings and four had walls with hedges. The only other material represented was timber pickets with four examples (6%). While 19th century houses are more likely to have brick boundaries all ages of building within the sample had boundaries.

Figure 84: The Railway Maltings, Grade II.

Figure 83: Malthouse and premises, Grade II*.

Figure 85: 15 Bridge Street.

Design Guidance and Codes

04

04. DESIGN GUIDANCE AND CODES

This section sets out the principles that will influence the design of potential new development and inform the retrofit of existing properties in the Bures Neighbourhood Area. Where possible, local images are used to exemplify the design guidelines and codes. Where these images are not available, best practice examples from elsewhere are used.

04.1 Introduction

The following section describes a set of design codes that have been put together based on the existing context of Bures.

These codes will aim to guide any changes or development within the village to ensure the local character is respected whilst still allowing space for innovation within the built environment.

The design codes have been split into three categories. Both national and regional guidance, outlined in chapter 1, should be read in conjunction with these codes. These codes act as a support to these documents and should not be considered in isolation.

4.1.1 The importance of good design

As the NPPF (paragraph 126) notes, "good design is a key aspect of sustainable development, creates better places in which to live and work and helps make development acceptable to communities".

Research, such as for the Government's Commission for Architecture and the Built Environment (now part of the Design Council; see, for example, The Value of Good Design¹) has shown that good design of buildings and places can:

- Improve health and well-being;
- Increase civic pride and cultural activity;
- Reduce crime and anti-social behaviour; and
- Reduce pollution.

This document seeks to harness an understanding of how good design can make future development as endearingly popular as the best of what has gone before.

4.1.2 Placemaking and design codes

These design codes are underpinned by a set of placemaking principles that should influence the design of future development areas, public realms, homes and green spaces, and the interfaces between them.

What designers and planners call 'placemaking' is about creating the physical conditions that residents and users find attractive and safe, with good levels of social interaction and layouts that are easily understood.

The placemaking principles set out in the following pages should be used to assess the design quality of future development or regeneration proposals. These key principles should be considered in all cases of future development as they reflect positive placemaking and draw on the principles set out in many national urban design best practice documents including the National Design Guide, Building for a Healthy Life and the Urban Design Compendium.

The guidelines developed in this part focus on residential environments. However new

housing development should not be viewed in isolation, but considerations of design and layout must be informed by the wider context.

The local pattern of lanes and spaces, building traditions, materials and the natural environment should all help to determine the character and identity of a development.

It is important with any proposal that full account is taken of the local context and that the new design embodies the 'sense of place'.

Reference to context means using what is around, shown in the first three chapters, as inspiration and influence and it could be a contemporary solution that is in harmony with the surroundings.

04.2 The Design Codes

Based on the understanding gained in the previous chapters, this section will identify design codes for future development to adhere to. As identified in the diagnostic report, the following design codes have been created to the whole Bures Neighbourhood Area:

SL. Settlement layout

BU. Built form

EE. Environmental and energy efficiency

SL. Settlement layout

SL 01. PATTERN OF DEVELOPMENT

Bures is primarily formed of linear development along the main transport routes through the village. The village has development further through lanes which branch off these linear development routes. Any new development should respect the following principles:

- Proposals should maintain the continuity of built form along the main route.
 However, buildings should not be repetitive, and should provide variety of building types and design with coherent scale, massing and detailing;
- Treatment of main road frontages should include tall trees, hedgerows and the boundary walls typical of the village to increase the sense of enclosure and linear form;
- Linear pattern settlement almost always orientates inwards towards the main road and turns its back towards the

- landscape to the rear. Building frontages should reinforce the linearity of the street, where possible; and
- Boundary treatments can vary, from low walls to soft landscaped edges on the periphery of the settlement.
 Residential development with a hard edge which imposes an abrupt transition from the settlement to the surrounding countryside should be avoided.

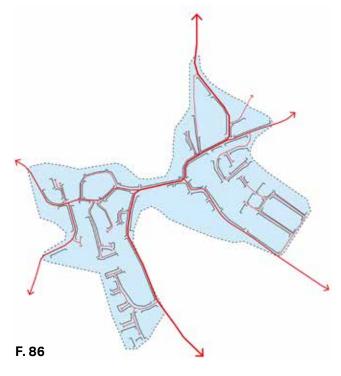


Figure 86: Diagram to show the pattern of development in Bures.

Figure 87: Map to show the pattern of development in Bures.

SL 02. LAYOUT OF BUILDING

Bures owes much of its character to the historic pattern and layout of its buildings and settlements. New developments should respect the particular building patterns of each settlement in order to contribute positively to their character. In particular:

- Development should adopt the enclosure characteristics demonstrated in the village. New development should strive to knit in with the existing settlement morphology by adopting similar characteristics;
- Development should be considered strategically at the settlement level and should not be considered in isolation:
- New development should be planned to be permeable, promoting active travel at all times, providing plentiful nonvehicular connections;
- Layout, clustering and massing should take precedent from the best examples of development within the surrounding context. The photographs on this page

illustrate some precedent examples from the existing Neighbourhood Plan Area: and

 New development should respond to site specific micro-climates and sun paths and use these as key design drivers to increase the environmental comfort for building users, both internally and externally.

Figure 88: A variety of building types and roof line add interest to the local character.

Figure 89: Exposed timber construction and colourful painted plastered facades are part of the local character of the conservation area

Figure 90: Gentle winding roads and an informal road layout is characteristic of the conservation area.

BU. Built form

The following section outlines policies that should be considered by applicants when creating new development within Bures. Some of the following guidance is directed at development on existing plots, such as extensions, though many can be applied to both new and existing development.

In general, the historic form of parts of Bures in the conservation areas are of concentrated plots and little to no front gardens. While this is appropriate when development or redevelopment occurs in those areas, other, newer, areas should be developed in a coherent form with modern best practice. That is, there should be a proportional relationship between size of plot, dwelling and spaces between the dwellings.

Generally across the Bures Neighbourhood Area building heights are constrained to 1-2 storeys and use construction and materials from the local vernacular. The following illustrative diagrams show this intention and new proposals would need to demonstrate that this has been observed.

The structure of the following codes generally starts with policies on a larger scale and subsequently moves to codes related to specific built form details.

BU 01. OVERLOOK PUBLIC SPACE

In order to provide a sense of security and natural surveillance, the windowed front elevation of a dwelling should face the street where this is in keeping with local character. The rear boundaries facing the street should be avoided as this has a negative impact on the character of a street and reduces levels of security and natural surveillance. Rear boundaries should back on to other rear boundaries or provide a soft transition into the natural environment such as at the settlement edge.

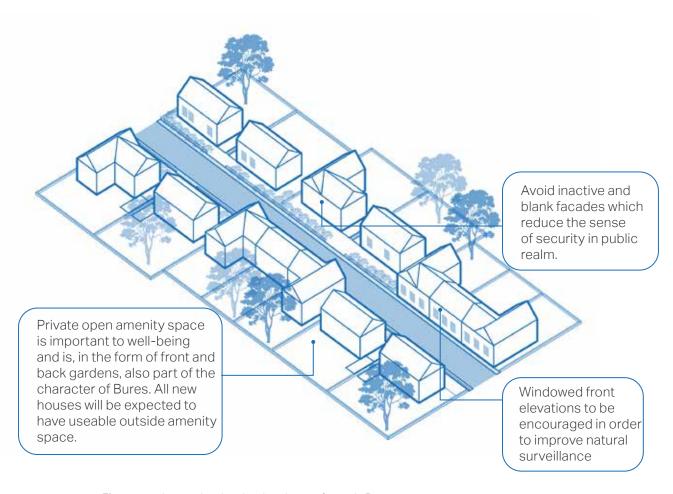
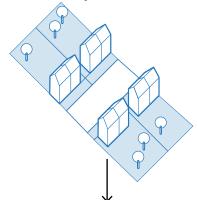


Figure 91: Image showing the abundance of trees in Bures.


BU 02. DEFINE FRONTS AND BACKS

Fronts of buildings are prominent features that determine the relationship of the built form with the rest of the street scene, Fronts and backs of properties should be well-defined to inform the structure of the village.

The ratio of garden space to built form within the overall plot is important to ensure that the sense of openness and green space within the village is maintained.

There are differing garden dimensions across Bures. Front gardens in Bures St Mary are small, with many properties not having one. In comparison rural development properties often have larger front gardens. In general properties have larger back gardens than front and the ratio of garden space to built form within the plot increases towards the edge of the village at the transition to the surrounding countryside.

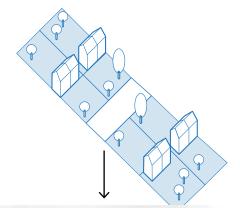
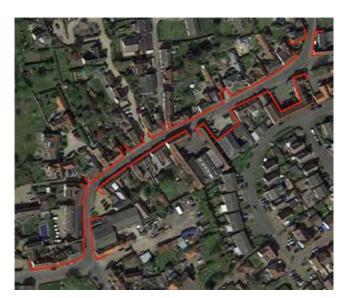

Back gardens should have a minimum private (i.e. rear) garden size of 100m2 for most types of houses (The Essex Design Guide). For houses of one or two bedroom size, usually with smaller footprint, the provision of a 100m2 garden is not practicable without being excessively long and thin. In any case, since these

Figure 92: Illustrative diagram and example in Bures St Mary of housing with very small front gardens,

are dwellings for smaller households the requirement by residents for garden area is less. Different local planning authorities have varying garden size standards for one and two-bedroom houses. 50m2 is the most common, but applicants should consult the relevant District Council Planning Department.


Figure 93: Illustrative diagram and example in the rural development area of housing with larger front gardens and overall larger garden size.

BU 03. MAINTAIN A CONSISTENT BUILDING LINE

The use of continuous building lines and setback distances contribute to the overall character of the area and the sense of enclosure of the streets and public spaces. Continuous building lines with a minimum gap create a strong distinction between public and private spaces, and provide definition to the public realm. Where buildings are more generously set back from the carriageway, the threshold spaces should be well landscaped.

- To ensure sufficient street enclosure, private front thresholds should have a modest depth and accommodate a small garden or area for plantation;
- Low to medium densities in residential areas can vary setbacks in order to respond to the landscape context and the more open character of the area; and
- Front gardens can be much deeper where the topography requires so or to

respond to the existing character area. It also helps to create a softer transition between countryside, green spaces and built environment.

Figure 94: Consistent building line with subtle variations in set back along the High Street in Bures St Mary.

Figure 95: North of the High Street at the edge of Bures St Mary front gardens increase in size and the building line becomes more inconsistent to create a transition between the built up area and the countryside.

BU 04. DESIRED HEIGHT PROFILE

Creating a good variety in the roofline is a significant element of designing attractive places. Roof heights in Bures are generally constrained to 2 storeys, but there is a variety of roof profiles which can be referenced to influence new designs.

- Monotonous building elevations should be avoided, with subtle changes in the roofline being promoted during the design process;
- The scale of the roof should always be in proportion with the dimensions of the building. Flat roofs for buildings, extensions and garages should be avoided:
- Within Bures the majority of the buildings have a pitched or gable pitched roof, therefore these types of roof are the most appropriate.

- Local traditional roof detailing elements should be considered and implemented where possible.
- Roofs should also be designed with photovoltaics taken into consideration, either as part of the initial design or for future retrofit. The orientation and available roof space should also be considered; and
- Chimney type and height should be congruent with the typical Neighbourhood Plan Area chimney precedent examples. Almost all chimneys in the historic core are brick.

Figure 96: Varying roof profiles along Colchester Road. **Figure 97:** Varying roof profiles along the High Street.

BU 05. ESTABLISH A CONSISTENT PROPERTY BOUNDARY

- Buildings should ordinarily front onto streets. The building line can have subtle variations in the form of recesses and protrusions, but will generally follow a consistent line:
- Buildings should be designed to ensure that streets and/or public spaces have good levels of natural surveillance from adjacent buildings. This can be achieved by placing ground floor habitable rooms and upper floor windows facing the street;
- Natural boundary treatments should reinforce the sense of continuity of the building line and help define the street, appropriate to the character of the area. They should be mainly continuous hedges and low walls, as appropriate, made of traditional materials found elsewhere in the village;

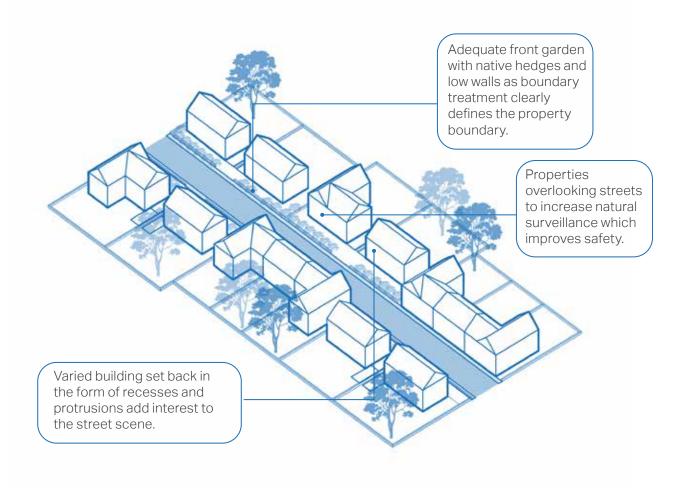


Figure 98: Varying roof profiles along Colchester Road.

- If placed on the property boundary, waste storage should be integrated as part of the overall design of the property. Landscaping could also be used to minimise the visual impact of bins and recycling containers; and
- Locally distinctive landscape features and planting, such as low wall boundary and hedges of native species should be used in new development to define boundaries. Any material that is not in keeping with the local character should be avoided. Brick walls are an important component in the character of Bures.
 See code BU 07 below for more detail.

Figure 99: Bin storage attractively integrated into the design feature of a house in Bures St Mary.

Figure 100: Low brick wall and planting used to define the boundary of a house in Bures hamlet.

Figure 101: Low brick wall and neat hedgerow used to define the boundary of a house in Bures St Mary.

BU 06. EXTENSION AND CONVERSIONS

There are a number of principles that residential extensions and conversions should follow to maintain character:

- The original building should remain the dominant element of the property regardless of the scale or number of extensions. The newly built extension should not overwhelm the building from any given viewpoint;
- Extensions should not result in a significant loss to the private amenity area of the dwelling;
- Designs that wrap around the existing building and involve overly complicated roof forms should be avoided; and
- The pitch and form of the roof used on the building adds to its character and extensions should respond to this where appropriate.

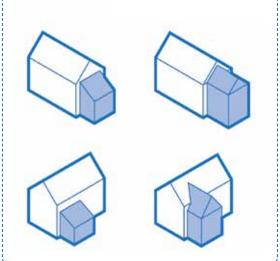
Design treatment in case of loft conversion:

Loft conversion incorporating skylights.

Loft conversion incorporating gable dormers.

Loft conversion incorporating a long shed dormer which is out of scale with the original building.

Original roofline of an existing building.



Loft conversion Loft conversion incorporating

incorporating gable gable dormers. dormers which are out of scale and do not consider existing window rhythm or frequency

Good example for side extensions. respecting existing building scale, massing and building line.

- Extensions should consider the materials, architectural features, window sizes and proportions of the existing building and respect these elements to design an extension that matches and complements the existing building;
- In the case of side extensions, the new part should be set back from the front of the main building and retain the proportions of the original building. This is in order to reduce any visual impact of the join between existing and new;
- In the case of rear extensions, the new part should not have a harmful effect on neighbouring properties in terms of overshadowing, overlooking or privacy issues;
- Any housing conversions should respect and preserve the building's original form and character; and

 Where possible, reuse as much of the original materials as possible, or alternatively, use like-for-like materials.
 Any new materials should be sustainable and be used on less prominent building parts.

Many household extensions are covered by permitted development rights, and so do not need planning permission. These rights do not apply in certain locations such as Conservation Areas.

BU 07. ARCHITECTURAL DETAILS, MATERIALS AND COLOUR PALETTE

Bures has a rich vernacular which constitutes its architectural character and identity. Architectural details can be split into four categories. They are roofs, facades, ground materials and property boundary.

Roof materials and colour palette

Pitched and hipped roofs are the predominant roof types in Bures. This should be replicated in future development along with using similar materials.

The materials seen throughout Bures include clay tile, slate and plaintile roofs. The roofs tend to be steep pitched with brick or stone chimneys, with exception of the gentle pitch slate roofs, feature of the historic core of the village. The colour palette is generally darker colours such as grey and brown.

Slate roof Plaintile roof Plaintiled roof with dormer detailing

Materials

See section 3.2: there is a broadly even split of tiled and slate roofs in the village core.

Figure 102: Examples of roof materials and colour palette in Bures.

Facade materials and colour palette

Facades contribute to Bures' character through their materials and colour palette. The local vernacular of Essex/Suffolk soft reds dominates, along with some Suffolk White/London Stock or grey gault brick. Exposed timber framing can be seen on buildings in Bures and forms part of its architectural character.

Rendered and colourfully painted facades are also common in Bures. The colour palette is varied and includes white, offwhite, pink, yellow, orange, blue and green.

See section 3.2: brick and render are the dominant facade materials in the village core.

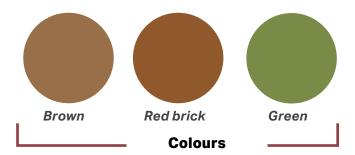
Ground surface materials and colour palette

Ground materials include concrete, permeable gravel and unpaved rural lanes. The majority of roads in Bures are concrete or rural unpaved typology and are typically grey in colour.

More informal lanes are permeable gravel or unpaved, made by the local aggregates including pea shingles, flint based grit and hoggin.

Figure 104: Examples of ground surface materials and colour palette in Bures.

Property boundary materials and colour palette


Red brick walls are a common boundary treatment throughout Bures and are accompanied by green foliage both in private front gardens and on building facades.

Other boundary treatments include hedgerows and some examples of railings and timber fences.

Colours for boundary treatments are predominantly red-brown, brown and green.

Materials

See section 3.2: low brick walls with Flemish bond are the most common boundary treatment in the village core.

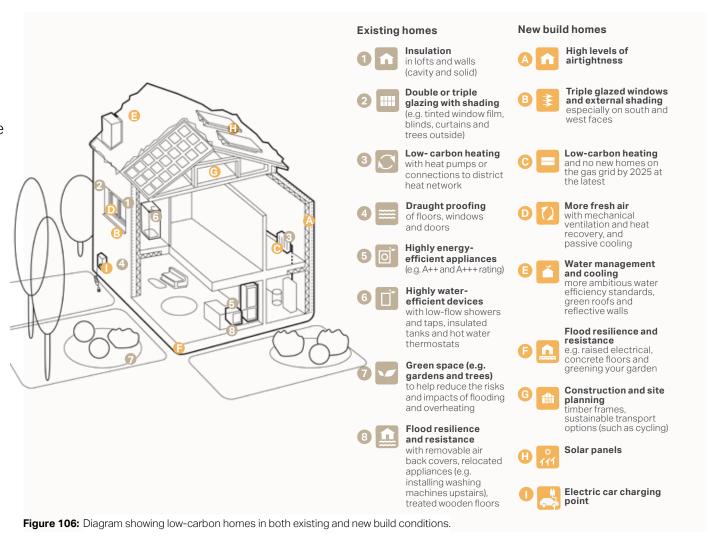
Figure 105: Examples of property boundary materials and colour palette in Bures.

EE. Environmental and energy efficiency

Design codes in the following section apply to the whole Bures Neighbourhood Plan Area. They contain important policies that will help to reduce our collective impact on the planet while allowing the natural environment in and around Bures to flourish.

They include general guidance that apply to both new and existing development as some of the policies can be used to modify existing dwelling to become more environmentally sustainable.

New developments should encourage and support innovative and proactive approaches to design and opportunities to deliver decentralised energy systems powered by a renewable or low carbon source and associated infrastructure including community-led initiatives.


EE 01. FEATURES IN DWELLINGS

The following section elaborates on energy efficient technologies that could be incorporated in buildings and at broader Parish design scale as principles.

Use of such principles and design tools should be encouraged in order to contribute towards a more sustainable environment

Energy efficient or eco design combines all around energy efficient appliances and lighting with commercially available renewable energy systems, such as solar electricity and/or solar/ water heating.

Starting from the design stage there are strategies that can be incorporated to include technologies such as passive solar heating, cooling and energy efficient landscaping which are determined by local climate and site conditions.

EE 02. BUILDING FABRIC

Thermal mass

Thermal mass describes the ability of a material to absorb, store and release heat energy. Thermal mass can be used to even out variations in internal and external conditions, absorbing heat as temperatures rise and releasing it as they fall. Thermal mass can be used to store high thermal loads by absorbing heat introduced by external conditions, such as solar radiation, or by internal sources such as appliances and lighting, to be released when conditions are cooler. This can be beneficial both during the summer and the winter.

Thermal storage in construction elements can be provided, such as a trombe wall placed in front of a south facing window or concrete floor slabs that will absorb solar radiation and then slowly re-release it into the enclosed space. Mass can be combine with suitable ventilation strategies.

Insulation

Thermal insulation can be provided for any wall or roof the exterior of a building to prevent heat loss. Particular attention should be paid to heat bridges around corners and openings at the design stage.

Provide acoustic insulation to prevent the transmission of sound between active (i.e. living room) and passive spaces (i.e. bedroom). Provide fir insulation and electrical insulation to prevent the passage of fire between spaces or components and to contain and separate electrical conductors.

Airtightness

Airtight constructions help reduce heat loss, improving comfort and protecting the building fabric. Airtightness is achieved by sealing a building to reduce infiltration-which is sometimes called uncontrolled ventilation. Simplicity is key for airtight design. The fewer junctions the simpler and more efficient the airtightness design will be.

An airtight layer should be formed in the floor, walls and roof. Doors, windows and roof lights to the adjacent walls or roof should be sealed. Link the interfaces between walls and floor and between walls and roof, including around the perimeter of any intermediate floor. Seal penetrations through the air barrier. Consider waster pipes and soil pipes, ventilation ducts, incoming water, gas, oil, electricity, data and district heating, chimneys and flues, including air supplies to wood burning stoves, connections to external services, such as entry phones, outside lights, external taps and sockets, security cameras and satellite dishes.

The diagram on the following page illustrates some of these key considerations.

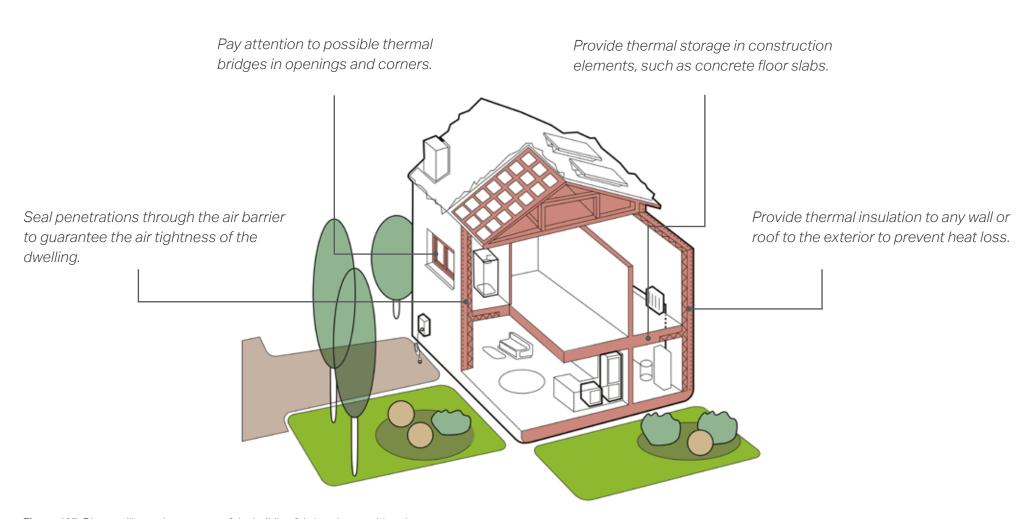


Figure 107: Diagram illustrating aspects of the building fabric to be considered.

EE 03. ADAPTABILITY

Houses should be designed to meet the differing and changing needs of households and people's physical abilities over their entire lifetime. This is an important aspect of making homes sustainable and durable.

One way to achieve this is to incorporate all the standards- M4(1), M4(2) and M4(3)- of the approved document M4 of the Building Regulations in the design of new homes and to assess whether they can be retrofitted in existing properties.

The diagram to the right illustrates the principles of inclusivity, accessibility, adaptability and sustainability in a dwelling.

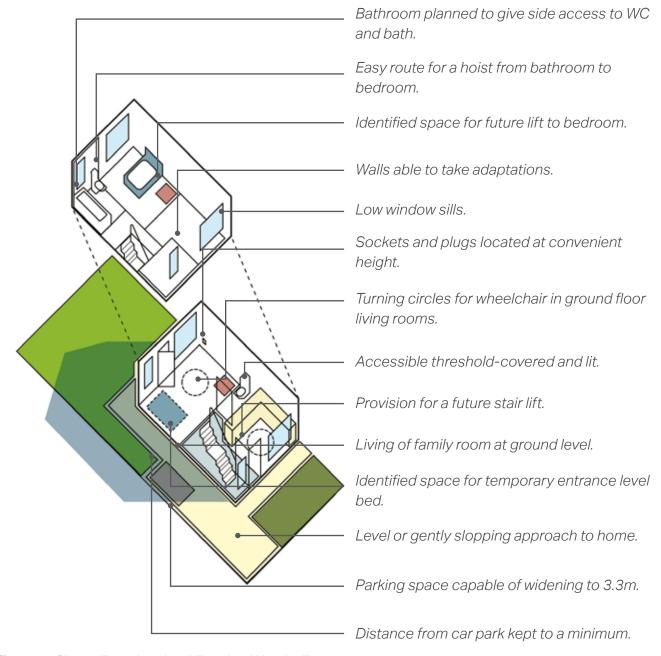


Figure 108: Diagram illustrating adaptability traits within a dwelling.

EE 04. FLOOD MITIGATION

One of the issue within Bures is flood risks which affects some parts of the village as shown on the flood risk map (**Figure 19**).

There are various ways to mitigate flood risk such as Sustainable urban Drainage System (SuDS), rainwater harvesting, and permeable pavements which are elaborated on the following pages.

Sustainable Urban Drainage System (SuDS)

The term SuDS stands for Sustainable Urban Drainage Systems. It covers a range of approaches to managing surface water in a more sustainable way to reduce flood risk and improve water quality whilst improving amenity benefits.

SuDS work by reducing the amount and rate at which surface water reaches a waterway or combined sewer system. Usually, the most sustainable option is collecting this water for reuse, for example in a water butt or rainwater harvesting system, as this has the added benefit of reducing pressure on important water sources.

Where reuse is not possible there are two alternative approaches using SuDS:

- Infiltration, which allows water to percolate into the ground and eventually restore groundwater; and
- Attenuation and controlled release, which holds back the water and slowly releases it into the sewer network.
 Although the overall volume entering the sewer system is the same, the peak flow is reduced. This reduces the risk of sewers overflowing. Attenuation and controlled release options are suitable when either infiltration is not possible (for example where the water table is high or soils are clay) or where infiltration could be polluting (such as on contaminated sites).

Figure 109: Example of sustainable drainage incorporated into the street scene.

Figure 110: Example of SuDs along a footpath.

The most effective type or design of SuDS would depend on site-specific conditions such as underlying ground conditions, infiltration rate, slope, or presence of ground contamination. A number of overarching principles can however be applied:

- Reduce runoff rates by facilitating infiltration into the ground or by providing attenuation that stores water to help slow its flow down so that it does not overwhelm water courses or the sewer network;
- Integrate into development and improve amenity through early consideration in the development process and good design practices;
- SuDS are often as important in areas that are not directly in an area of flood risk themselves, as they can help reduce downstream flood risk by storing water upstream;
- Some of the most effective SuDS are

vegetated, using natural processes to slow and clean the water whilst increasing the biodiversity value of the area:

- Best practice SuDS schemes link the water cycle to make the most efficient use of water resources by reusing surface water; and
- SuDS must be designed sensitively to augment the landscape and provide biodiversity and amenity benefits.

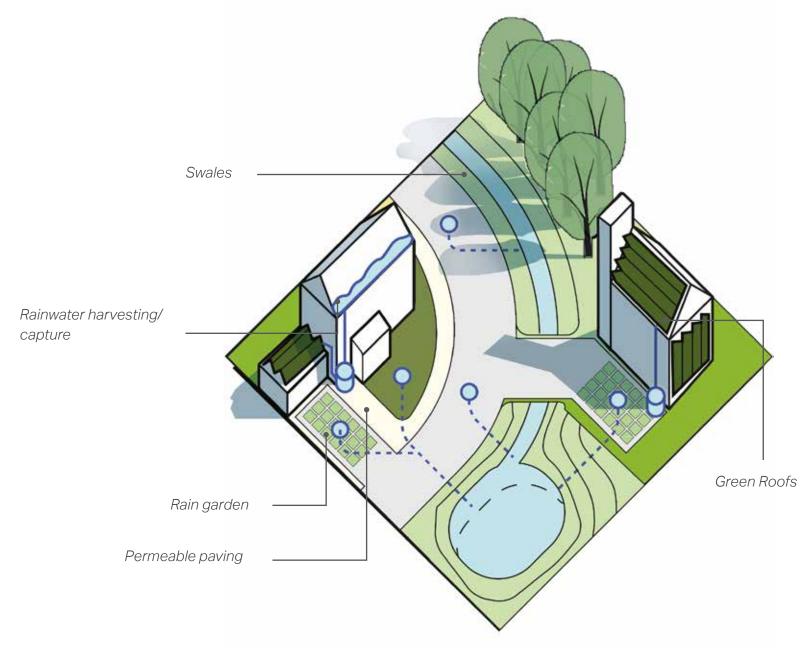


Figure 111: Illustrative diagram of sustainable urban drainage systems in a residential neighbourhood.

Rainwater harvesting

Rainwater harvesting is a system for capturing and storing rainwater as well as enabling the reuse of in-situ grey water.

Some design considerations include:

- Concealing tanks with complementary cladding.
- Use attractive materials or finishing for pipes, unsightly pipes should be avoided.
- Combine landscape or planters with water capture systems.
- Use underground tanks.

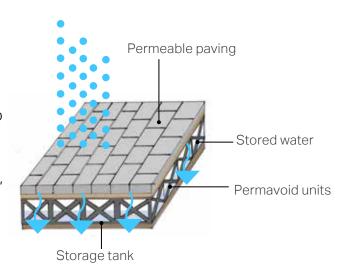
Figure 112: Example of a rainwater harvesting tank in the shape of a bee hive.

Figure 113: Example of a modular water tank.

Permeable streets

Most built-up areas, including roads and driveways, increase impervious surfaces and reduce the capacity of the ground to absorb runoff water. This in turn increases the risks of surface water flooding. Permeable pavements offer a solution to maintain soil permeability while performing the function of conventional paving. The choice of permeable paving units must be made depending on the local context; the units may take the form of unbound gravel, clay pavers, or stone setts.

Permeable paving can be used where appropriate on footpaths, public squares, private access roads, driveways, and private areas within the individual development boundaries.


It is recommended that the majority of the unbuilt areas in the plot (i.e. gardens) are permeable by means of landscape such as grass or earth as well as permeable and filtrating pavements. As a rule of thumb the % of permeable area should be between

30% to 70%.

In addition, permeable pavement must also comply with:

- Flood and Water Management Act 2010, Schedule 3;¹
- The Building Regulations Part H Drainage and Waste Disposal;²
- Town and Country Planning (General Permitted Development) (England) Order 2015;3

Regulations, standards, and guidelines relevant to permeable paving and sustainable drainage are listed on the next page:

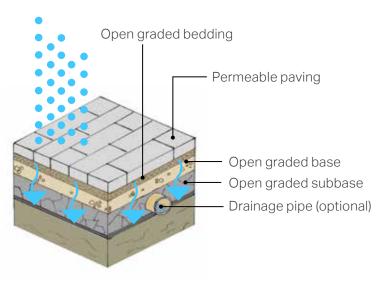


Figure 114: Diagrams illustrating the functioning of a soak away

¹ Great Britain (2010). Flood and Water Management Act, Schedule 3. Available at: http://www.legislation.gov.uk/ukpga/2010/29/schedule/3

² Great Britain (2010). *The Building Regulations Part H – Drainage and Waste Disposal*. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/442889/BR_PDF_AD_H_2015.pdf

³ Great Britain (2015). *Town and Country Planning (General Permitted Development) (England) Order 2015.* Available at: http://www.legislation.gov.uk/ uksi/2015/596/pdfs/uksi 20150596 en.pdf

- Sustainable Drainage Systems nonstatutory technical standards for sustainable drainage systems;¹
- The SuDS Manual (C753);2
- BS 8582:2013 Code of practice for surface water management for development sites;³
- BS 7533-13:2009 Pavements constructed with clay, natural stone or concrete pavers;⁴ and
- Guidance on the Permeable Surfacing of Front Gardens.⁵

uploads/attachment data/file/7728/pavingfrontgardens.pdf

Figure 115: A good example of permeable paver (Source: https://www.paverconnection.com/testimonial/hedwig-village-permeable-driveway-and-patio-upgrade/)

Figure 116: A good example of clay paver (Source: https://www.londonstone.co.uk/brick-pavers/paving-bricks/)

¹ Great Britain. Department for Environment, Food and Rural Affairs (2015). Sustainable drainage systems – non-statutory technical standards for sustainable drainage systems. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/415773/sustainable-drainage-technical-standards.pdf

² CIRIA (2015). The SuDS Manual (C753).

³ British Standards Institution (2013). *BS 8582:2013 Code of practice for surface water management for development sites*. Available at: https://shop.bsigroup.com/ProductDetail/?pid=00000000030253266
⁴ British Standards Institution (2009). *BS 7533-13:2009 Pavements constructed with clay, natural stone or concrete pavers*. Available at: https://shop.bsigroup.com/ProductDetail/?pid=00000000030159352
⁵ Great Britain. Ministry of Housing, Communities & Local Government (2008). *Guidance on the Permeable Surfacing of Front Gardens*. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/

EE 05. WASTE STORAGE AND SERVICING

With modern requirements for waste separation and recycling, the number and size of household bins has increased. This poses a problem with the aesthetics of the property.

- Servicing arrangements should have a specific and attractive enclosure of sufficient size for all the necessary bins, this avoids the blocking of pavements with bins and makes the public realm more attractive. The storage solutions should be kept to the minimum dimensions in order to prevent the footprint being converted into an annexe at a later date;
- Create a specific enclosure of sufficient size for all the necessary bins;
- Bins should be placed as close to the dwelling's boundary and the public highway, such as against wall, fence or hedge;

Figure 117: Examples of successful storage design solutions for accommodating bins and bicycles at the front of buildings.

- Refer to the materials palette to analyse what would be a complementary material;
- Create an environmentally sustainable enclosure to contain all bins; and
- The illustrations below show some successful design solutions for accommodating bins within the plot.

Figure 118: Example where the bins are stored under the shed, whilst the side wall is decorated with flowers and plants to improve the environment. This arrangement combined with the particular permeable paving could contributes to the rural feel of the village.

Figure 119: Example of bin storage surrounded by flowers and plants improving the surroundings and enhancing biodiversity.

EE 06. WILDLIFE FRIENDLY FEATURES

Bures has a rich and varied landscape character. In addition, there are many natural features and assets, such as trees, woodlands, hedgerows, verges, front and back gardens. They all contribute to provide habitats for biodiversity to flourish.

- Development must protect and enhance woodlands, hedges, trees and road verges, where possible. Natural tree buffers should also be protected when planning for new developments.
- Development must avoid abrupt edges to development with little vegetation or landscape on the edge of the settlement and, instead, aim for a comprehensive landscape buffering.
- Development should seek to achieve biodiversity net gain and provide new habitats and wildlife corridors.

- It is important to ensure existing habitats are buffered. Widths of buffer zones should be wide enough and based on specific ecological function.
- Development should create wildlife corridors in the surrounding countryside by proposing new green links and improving the existing ones. This will enable wildlife to travel to and from foraging areas and their dwelling areas. An example of this are hedgehog corridors which should be incorporated into new developments to ensure relevant habitats for hedgehogs are maintained and enhanced.
- Development must protect mature and veteran trees, wide green verges and species-rich hedgerows as they are essential for biodiversity. Hedgerows are a particularly good habitat for fauna and also prevent soil erosion.
- Development should show that it has considered opportunities to incorporate nature friendly ideas such as bird boxes,

bee bricks, bug-houses, swift bricks or ponds. To illustrate, swift populations are in decline in the UK as more development and a move towards airtight buildings has resulted in a loss of habitat. To encourage swifts to live and breed in the area Swift bricks should be considered as they are easily installed, fitting within a multiple of standard UK brick sizes.

Figure 120: Example of a swift brick under an eave.

Figure 121: Example of a hedgehog corridor within in a garden fence.

04.4 Checklist

The design guidance and codes in this document cannot cover all design eventualities, therefore this chapter provides a number of questions based on established good practice against which the design proposal should be evaluated. The aim is to assess all proposals by objectively answering the questions below. Not all the questions will apply to every development. The relevant ones, however, should provide an assessment as to whether the design proposal has considered the context and provided an adequate design solution.

As a first step there are a number of ideas or principles that should be present in all proposals. These are listed under 'General design guidance for new development'. Following these ideas and principles, several questions are listed for more specific topics on the following pages.

General design guidelines for new development:

- Integrate with existing paths, streets, circulation networks and patterns of activity;
- Reinforce or enhance the established settlement character of streets, greens, and other spaces;
- Harmonise and enhance existing settlement in terms of physical form, architecture and land use;
- Relate well to local topography and landscape features, including prominent ridge lines and long-distance views;
- Reflect, respect, and reinforce local architecture and historic distinctiveness;
- Retain and incorporate important existing features into the development;

- Respect surrounding buildings in terms of scale, height, form and massing;
- Adopt contextually appropriate materials and details;
- Provide adequate open space for the development in terms of both quantity and quality;
- Incorporate necessary services and drainage infrastructure without causing unacceptable harm to retained features;
- Ensure all components e.g. buildings, landscapes, access routes, parking and open space are well related to each other;
- Positively integrate energy efficient technologies;

- Make sufficient provision for sustainable waste management (including facilities for kerbside collection, waste separation, and minimisation where appropriate) without adverse impact on the street scene, the local landscape or the amenities of neighbours;
- Ensure that places are designed with management, maintenance and the upkeep of utilities in mind; and
- Seek to implement passive environmental design principles by, firstly, considering how the site layout can optimise beneficial solar gain and reduce energy demands (e.g. insulation), before specification of energy efficient building services and finally incorporate renewable energy sources.

3 (continues)

Street grid and layout:

- Does it favour accessibility and connectivity? If not, why?
- Do the new points of access and street layout have regard for all users of the development; in particular pedestrians, cyclists and those with disabilities?
- What are the essential characteristics of the existing street pattern; are these reflected in the proposal?
- How will the new design or extension integrate with the existing street arrangement?
- Are the new points of access appropriate in terms of patterns of movement?
- Do the points of access conform to the statutory technical requirements?

Local green spaces, views & character:

- What are the particular characteristics of this area which have been taken into account in the design; i.e. what are the landscape qualities of the area?
- Does the proposal maintain or enhance any identified views or views in general?
- How does the proposal affect the trees on or adjacent to the site?
- Can trees be used to provide natural shading from unwanted solar gain? i.e. deciduous trees can limit solar gains in summer, while maximising them in winter.
- Has the proposal been considered within its wider physical context?
- Has the impact on the landscape quality of the area been taken into account?

- In rural locations, has the impact of the development on the tranquillity of the area been fully considered?
- How does the proposal impact on existing views which are important to the area and how are these views incorporated in the design?
- How does the proposal impact on existing views which are important to the area and how are these views incorporated in the design?
- Can any new views be created?
- Is there adequate amenity space for the development?
- Does the new development respect and enhance existing amenity space?

Local green spaces, views & character:

- Have opportunities for enhancing existing amenity spaces been explored?
- Will any communal amenity space be created? If so, how this will be used by the new owners and how will it be managed?
- Is there opportunity to increase the local area biodiversity?
- Can green space be used for natural flood prevention e.g. permeable landscaping, swales etc.?
- Can water bodies be used to provide evaporative cooling?
- Is there space to consider a ground source heat pump array, either horizontal ground loop or borehole (if excavation is required)?

Gateway and access features:

- What is the arrival point, how is it designed?
- Does the proposal maintain or enhance the existing gaps between settlements?
- Does the proposal affect or change the setting of a listed building or listed landscape?
- Is the landscaping to be hard or soft?

Buildings layout and grouping:

- What are the typical groupings of buildings?
- How have the existing groupings been reflected in the proposal?
- Are proposed groups of buildings offering variety and texture to the townscape?
- What effect would the proposal have on the streetscape?
- Does the proposal maintain the character of dwelling clusters stemming from the main road?
- Does the proposal overlook any adjacent properties or gardens? How is this mitigated?
- Subject to topography and the clustering of existing buildings, are new buildings oriented to incorporate passive solar design principles?

Buildings layout and grouping:

- If any of the buildings were to be heated by an individual air source heat pump (ASHP), is there space to site it within the property boundary without infringing on noise and visual requirements?
- Can buildings with complementary energy profiles be clustered together such that a communal low carbon energy source could be used to supply multiple buildings that might require energy at different times of day or night to reduce peak loads? And/or can waste heat from one building be extracted to provide cooling to that building as well as heat to another building?

Building line and boundary treatment:

- What are the characteristics of the building line?
- How has the building line been respected in the proposals?
- Has the appropriateness of the boundary treatments been considered in the context of the site?

Buildings layout and grouping:

- What are the characteristics of the roofline?
- Have the proposals paid careful attention to height, form, massing and scale?
- If a higher than average building(s) is proposed, what would be the reason for making the development higher?
- Will the roof structure be capable of supporting a photovoltaic or solar thermal array either now, or in the future?
- Will the inclusion of roof mounted renewable technologies be an issue from a visual or planning perspective?If so, can they be screened from view, being careful not to cause over shading?

8

Household extensions:

- Does the proposed design respect the character of the area and the immediate neighbourhood, and does it have an adverse impact on neighbouring properties in relation to privacy, overbearing or overshadowing impact?
- Is the roof form of the extension appropriate to the original dwelling (considering angle of pitch)?
- Do the proposed materials match those of the existing dwelling?
- In case of side extensions, does it retain important gaps within the street scene and avoid a 'terracing effect'?
- Are there any proposed dormer roof extensions set within the roof slope?
- Does the proposed extension respond to the existing pattern of window and door openings?

- Is the side extension set back from the front of the house?
- Does the extension offer the opportunity to retrofit energy efficiency measures to the existing building?
- Can any materials be re-used in situ to reduce waste and embodied carbon?

Building materials and surface treatment:

- What are the characteristics of the roofline?
- Have the proposals paid careful attention to height, form, massing and scale?
- If a higher than average building(s) is proposed, what would be the reason for making the development higher?
- Will the roof structure be capable of supporting a photovoltaic or solar thermal array either now, or in the future?
- Will the inclusion of roof mounted renewable technologies be an issue from a visual or planning perspective?If so, can they be screened from view, being careful not to cause over shading?

Building materials and surface treatment:

- Are recycled materials, or those with high recycled content proposed?
- Has the embodied carbon of the materials been considered and are there options which can reduce the embodied carbon of the design?For example, wood structures and concrete alternatives.
- Can the proposed materials be locally and/or responsibly sourced?
 E.g. FSC timber, or certified under
 BES 6001, ISO 14001 Environmental Management Systems?

Car parking:

- What parking solutions have been considered?
- Are the car spaces located and arranged in a way that is not dominant or detrimental to the sense of place?
- Has planting been considered to soften the presence of cars?
- Does the proposed car parking compromise the amenity of adjoining properties?
- Have the needs of wheelchair users been considered?
- Can electric vehicle charging points be provided?

- Can secure cycle storage be provided at an individual building level or through a central/ communal facility where appropriate?
- If covered car ports or cycle storage is included, can it incorporate roof mounted photovoltaic panels or a biodiverse roof in its design?

Architectural details and design:

- If the proposal is within a conservation area, how are the characteristics reflected in the design?
- Does the proposal harmonise with the adjacent properties? This means that it follows the height massing and general proportions of adjacent buildings and how it takes cues from materials and other physical characteristics.
- Does the proposal maintain or enhance the existing landscape features?
- Has the local architectural character and precedent been demonstrated in the proposals?
- If the proposal is a contemporary design, are the details and materials of a sufficiently high enough quality and does it relate specifically to the architectural characteristics and scale of the site?

- Is it possible to incorporate passive environmental design features such as larger roof overhangs, deeper window reveals and/or external louvres/ shutters to provide shading in hotter months?
- Can the building designs utilise thermal mass to minimise heat transfer and provide free cooling?
- Can any external structures such as balconies be fixed to the outside of the building, as opposed to cantilevering through the building fabric to reduce thermal bridge?

Delivery 05

05. DELIVERY

04.1 How to use this guide

The Design Guidelines will be a valuable tool in securing context-driven, high quality development within the parish of Bures. They will be used in different ways by different actors in the planning and development process.

What follows is a list of actors and how they will use the design guidelines.

Actors	How They Will Use the Design Guidelines
Applicants, developers, and landowners	As a guide to community and Local Planning Authority expectations on design, allowing a degree of certainty – they will be expected to follow the Guidelines as planning consent is sought.
Local Planning Authority	As a reference point, embedded in policy, against which to assess planning applications. The Design Guidelines should be discussed with applicants during any preapplication discussions.
Parish Council	As a guide when commenting on planning applications, ensuring that the Design Guidelines are complied with.
Community organisations	As a tool to promote community-backed development and to inform comments on planning applications.
Statutory consultees	As a reference point when commenting on planning applications.

About AECOM

AECOM is the world's trusted infrastructure consulting firm, delivering professional services throughout the project lifecycle — from planning, design and engineering to program and construction management. On projects spanning transportation, buildings, water, new energy and the environment, our publicand private-sector clients trust us to solve their most complex challenges. Our teams are driven by a common purpose to deliver a better world through our unrivaled technical expertise and innovation, a culture of equity, diversity and inclusion, and a commitment to environmental, social and governance priorities. AECOM is a *Fortune 500* firm and its Professional Services business had revenue of \$13.2 billion in fiscal year 2020. See how we are delivering sustainable legacies for generations to come at aecom.com and @AECOM.